



# HIGH STABILITY PRECISION WIREWOUND RESISTORS TRAPEZIUM ALUMINA HOUSED WIRE WOUND RESISTORS

### FEATURES

Advanced alloy technology

- $\cdot$  Very low TCR: lower than ±10ppm/ $^\circ\!\mathbb{C}.$
- · Tolerance up to ±0.5%
- · Excellent overall stability: Class 0.5
- $\cdot$  Suitable for the atrocious environment:

such as high attitude area and extreme cold area.

- · Very low noise and voltage coefficient
- · Non-inductance winding available under request
- · Perfect pulse loading capability
- · Compliant to RoHS directive 2011/65/EU
- · Compliant to REACH (EC No. 1907/2006)) (last updated: 27/06/2018)

## APPLICATIONS

- · Current sensor for test and measuring instruments
- · Power supply with high reliability
- · Components burn-in devices
- · Pulse load and in rush current protector
- · Medical equipment
- · Military electronics



www.thunder-resistor.com

sales@thunder-resistor.com





1. PART NUMBER:

Part number is identified by the series name, power rating, tolerance, temperature coefficient, and resistance value.

Example:

TAHS60G1200SeriesPowerTol.T.C.R.Resistance

- 1) Series name: TAHS
- 2) Power Rating: 60=60W; 80~500=80W~500W
- 3) Tolerance: F=±1.0%; G=±2.0%; J=±5.0%; K=10%
- 4) T.C.R.: 3=±25ppm/°C; 2=±50ppm/°C; 1=±100ppm/°C; 0≤±250ppm/°C;
- 5) Resistance Value for J tolerance: R47、1R0、100、101、102、333、104.....
- 6) Resistance Value for tighten tolerance: R470、1R00、10R0、1000、1001、1002
- 2. DIGITAL MARKING: All part number and batch number for tracing.





### 3. ELECTRICAL CHARACTERISTICS

| Туре    | Rated<br>dissipation<br>at 25°C | Resistance range<br>Resistance tolerance<br>Temperature coefficient<br>(ppm/°C) |                            | Max. working<br>voltage<br>and | Dielectric<br>withstanding | Dimension (mm) |      |      |     |      |        |                 |
|---------|---------------------------------|---------------------------------------------------------------------------------|----------------------------|--------------------------------|----------------------------|----------------|------|------|-----|------|--------|-----------------|
|         |                                 | F;J (%)                                                                         | F; J                       | voltage                        | vonage                     | mm             |      |      |     |      |        | mm <sup>2</sup> |
|         |                                 | C2; C3                                                                          | C1;C0                      |                                |                            | L1±1           | L2±1 | L3±1 | H±1 | W1±1 | W2±0.5 | d±0.2           |
| TAHS40  | 40W                             | 1Ω to 6.9kΩ                                                                     | 0.1Ω to 6.9kΩ              | 300V                           | 500V                       | 100            | 90   | 75   | 18  | 30   | 5.6    | 1.5             |
| TAHS60  | 60W                             | $1\Omega$ to $10k\Omega$                                                        | $0.1\Omega$ to $10k\Omega$ | 400V                           | 500V                       | 115            | 98   | 84   | 20  | 40   | 5.6    | 1.5             |
| TAHS80  | 80W                             | $1\Omega$ to $21k\Omega$                                                        | $0.1\Omega$ to $21k\Omega$ | 500V                           | 500V                       | 109            | 123  | 140  | 20  | 40   | 5.6    | 1.5             |
| TAHS100 | 100W                            | 1Ω to 32kΩ                                                                      | 0.1Ω to 32kΩ               | 600V                           | 1000V                      | 119            | 147  | 165  | 20  | 40   | 5.6    | 2               |
| TAHS150 | 150W                            | 1Ω to 39kΩ                                                                      | 0.1Ω to 39kΩ               | 900V                           | 1000V                      | 134            | 148  | 165  | 20  | 40   | 5.6    | 2               |
| TAHS200 | 200W                            | 1Ω to 43kΩ                                                                      | 0.1Ω to 43kΩ               | 1000V                          | 1000V                      | 155            | 170  | 185  | 30  | 40   | 5.6    | 2               |
| TAHS250 | 250W                            | 1Ω to 47kΩ                                                                      | $0.1\Omega$ to $47k\Omega$ | 1000V                          | 1000V                      | 184            | 198  | 215  | 30  | 60   | 5.6    | 2               |
| TAHS300 | 300W                            | 1Ω to 69kΩ                                                                      | 0.1Ω to 69kΩ               | 1500V                          | 1500V                      | 184            | 212  | 230  | 30  | 60   | 5.6    | 2               |
| TAHS350 | 350W                            | 1Ω to 69kΩ                                                                      | 0.1Ω to 69kΩ               | 1500V                          | 1500V                      | 184            | 212  | 230  | 30  | 60   | 5.6    | 2               |
| TAHS400 | 400W                            | 1Ω to 69kΩ                                                                      | 0.1Ω to 79kΩ               | 1500V                          | 1500V                      | 219            | 247  | 265  | 30  | 60   | 5.6    | 2               |
| TAHS500 | 500W                            | 1Ω to 69kΩ                                                                      | 0.1Ω to 99kΩ               | 1500V                          | 1500V                      | 289            | 317  | 335  | 30  | 60   | 5.6    | 2               |

\* Unless otherwise specified, all values are tested at the following condition: Temperature:  $21^{\circ}$  to  $25^{\circ}$ ; Relative humidity: 45% to 70%;

Rated Continuous Working Voltage (RCWV) =

Power Rating x Resistance Value

The resistors should be installed on the radiator with area from 1000cm<sup>2</sup>~2000cm<sup>2</sup> for more stability and reliability otherwise the temperature rising must be increased dramatically.

Resistance and temperature coefficient out of range is available upon request.

Non-inductance wound is available on request.

#### 4. DIMENSION



www.thunder-resistor.com sales@thunder-resistor.com





5. Derating curve and temperature rising curve

For resistors working at an ambiance temperature of  $25^{\circ}$ C or above, the power rating shall be derated in accordance with the following curve.



www.thunder-resistor.com

sales@thunder-resistor.com





- 6. ENVIRONMENTAL CHARACTERISTICS
- 1) Dielectric Withstanding Voltage

IEC 60115-1 4.7: Apply dielectric withstanding voltage between terminals and the house, no breakdown or flashover.

2) Temperature Coefficient Test

IEC 60115-1, 4.8: Test of resistors at room temperature and 60°C above room temperature. Then measure the resistance. The Temperature Coefficient is calculated by the following equation and its value should be within the range requested.

Resistor Temperature Coefficient = 
$$\frac{R - R_0}{R_0} \times \frac{1}{t - t_0} \times 10^6$$

R = Resistance value under the testing temperature

 $R_0$  = Resistance value at the room temperature

t = the 2<sup>nd</sup> testing temperature

t<sub>0</sub> = Room temperature

3) Short Time Overload Test

IEC60115-1 4.13: At 5 times RCWV loading or 2 times the maximum working voltage whichever is lower for 5 seconds, the resistor should be free from defects. The change of the resistance value should be within  $\pm(1\%+0.05 \ \Omega)$  as compared with the value before the test.

4) Climatic sequence

IEC 60115-1, 4.19: -55°C to Room Temp. to +200°C to Room Temp. (5 cycles). The change of the resistance value shall be within  $\pm(2.5\%+0.05 \Omega)$  as compared with the value before the test.

5) Damp Heat Steady State

IEC 60115-1, 4.24: 40±2°C, 90-95% RH for 56 days, loaded with 0.1 times RCWV or the maximum working voltage whichever is lower. The change of the resistance value should be within  $\pm(5.0\%+0.05 \Omega)$  as compared with the value before the test.

6) Load Life Test

IEC 60115-1, 4.25: 25±2°C at RCWV or the maximum working voltage whichever is lower for 1,000+48/-0 Hr. (1.5Hr. on, 0.5Hr. off). The resistors shall be arranged not much effected mutually by the temperature of others and the excessive ventilation shall not be performed. The change of the resistance value should be within  $\pm(5.0\%+0.05 \Omega)$  as compared with the value before the test.





7) Accidental Overload Test

IEC 60115-1, 4.26: 4 times RCWV for 1 Minute. No evidence of flaming or arcing

8) High voltage high pulse overload

Apply 10 pulses with voltage via resistance ruled by the following curve to the resistor, the pulses parameter is  $1.2/50\mu$ s. The change of the resistance shall be within  $\pm(3\%+0.05\Omega)$  as compared with the value before the load.

Apply 10 pulses with voltage via resistance ruled by the following curve to the resistor, the pulses parameter is  $10\mu$ s/700 $\mu$ s. The change of the resistance shall be within  $\pm(3\%+0.05\Omega)$  as compared with the value before the load.



## Disclaimer

All products, product specifications and data are subject to change without notice to improve reliability, function or design or otherwise. Thunder Precision Resistors makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product to the maximum extent permitted by applicable law.